5.3 Exponential Map

The exponential map from $ \mathrm{\mathfrak{sim}}(2)$ to $ \mathrm{Sim}(2)$ has a closed form:


$\displaystyle v=\left(\begin{array}{c}
x\\
y\\
\theta\\
\lambda
\end{array}\right)$ $\displaystyle \in$ $\displaystyle \mathbb{R}^{4}$ (59)
$\displaystyle \mathbf{R}$ $\displaystyle \equiv$ $\displaystyle \left(\begin{array}{cc}
\cos\theta & -\sin\theta\\
\sin\theta & \cos\theta
\end{array}\right)$ (60)
$\displaystyle A$ $\displaystyle \equiv$ $\displaystyle \frac{\sin\theta}{\theta}$ (61)
$\displaystyle B$ $\displaystyle \equiv$ $\displaystyle \frac{1-\cos\theta}{\theta^{2}}$ (62)
$\displaystyle C$ $\displaystyle \equiv$ $\displaystyle \frac{\theta-\sin\theta}{\theta^{3}}$ (63)
$\displaystyle \alpha$ $\displaystyle \equiv$ $\displaystyle \frac{\lambda^{2}}{\lambda^{2}+\theta^{2}}$ (64)
$\displaystyle s$ $\displaystyle \equiv$ $\displaystyle e^{\lambda}$  
$\displaystyle X$ $\displaystyle \equiv$ $\displaystyle \alpha\left(\frac{1-s^{-1}}{\lambda}\right)+\left(1-\alpha\right)\left(A-\lambda B\right)$ (65)
$\displaystyle Y$ $\displaystyle \equiv$ $\displaystyle \alpha\left(\frac{s^{-1}-1+\lambda}{\lambda^{2}}\right)+\left(1-\alpha\right)\left(B-\lambda C\right)$ (66)
$\displaystyle \mathbf{V}$ $\displaystyle =$ $\displaystyle \left(\begin{array}{cc}
X & -\theta Y\\
\theta Y & X
\end{array}\right)$ (67)
$\displaystyle \exp\left(\mathrm{alg}\left(v\right)\right)=\exp\left(\begin{arra...
...0 & -\theta & x\\
\theta & 0 & y\\
\hline 0 & 0 & -\lambda
\end{array}\right)$ $\displaystyle =$ $\displaystyle \left(\begin{array}{c\vert c}
\mathbf{R} & \mathbf{V}\cdot\left(\...
...}{c}
x\\
y
\end{array}\right)\\
\hline \mathbf{0} & s^{-1}
\end{array}\right)$ (68)

The elements of $ \mathbf{V}$ should be calculated with Taylor series when $ \theta$ or $ \lambda$ is small.

Ethan Eade 2012-02-16