6.4 Adjoint Representation

Let


$\displaystyle X=\left(\begin{array}{c\vert c}
\mathbf{A} & \mathbf{t}\\
\hline...
...array}{cc\vert c}
a & b & x\\
c & d & y\\
\hline 0 & 0 & 1
\end{array}\right)$ $\displaystyle \in$ $\displaystyle \mathrm{Aff}(2)$ (75)
$\displaystyle \mathbf{E}$ $\displaystyle \equiv$ $\displaystyle \left(\begin{array}{cc\vert cccc}
1 & 0 & 0 & 0 & 0 & 0\\
0 & 1 ...
...{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0
\end{array}\right)\in\mathbb{R}^{6\times6}$ (76)
$\displaystyle f$ $\displaystyle \equiv$ $\displaystyle \frac{1}{ad-bc}$ (77)
$\displaystyle \mathbf{\mathbf{C}}$ $\displaystyle \equiv$ $\displaystyle \left(\begin{array}{c\vert c}
a\cdot\mathbf{A}^{-T} & b\cdot\math...
...thbf{A}^{-T} & d\cdot\mathbf{A}^{-T}
\end{array}\right)\in\mathbb{R}^{4\times4}$ (78)
  $\displaystyle =$ $\displaystyle f\left(\begin{array}{cccc}
ad & -ac & bd & -bc\\
-ab & a^{2} & -b^{2} & ab\\
cd & -c^{2} & d^{2} & -cd\\
-bc & ac & -bd & ad
\end{array}\right)$ (79)
$\displaystyle \mathbf{T}$ $\displaystyle \equiv$ $\displaystyle \left(\begin{array}{cccc}
x & y & 0 & 0\\
0 & 0 & x & y
\end{array}\right)\in\mathbb{R}^{2\times4}$ (80)

Then


$\displaystyle \mathrm{Adj}_{X}$ $\displaystyle =$ $\displaystyle \mathbf{E}^{T}\left(\begin{array}{c\vert c}
\mathbf{A} & -\mathbf...
...hbf{C}}\\
\hline \mathbf{0} & \mathbf{\mathbf{C}}
\end{array}\right)\mathbf{E}$ (81)

Writing out the product explicitly:

$\displaystyle \mathrm{Adj}_{X}={\scriptstyle \left(\begin{array}{cc\vert cccc} ...
...ab\right) & \frac{f}{2}\left(a^{2}-b^{2}-c^{2}+d^{2}\right) \end{array}\right)}$ (82)

Ethan Eade 2012-02-16