10.3 Exponential Map

The exponential map from $ \mathrm{\mathfrak{sim}}(3)$ to $ \mathrm{Sim}(3)$ has a closed form:


$\displaystyle v=\left(\begin{array}{c}
\mathbf{u}\\
\boldsymbol{\omega}\\
\lambda
\end{array}\right)$ $\displaystyle \in$ $\displaystyle \mathbb{R}^{7}$ (135)
$\displaystyle \theta$ $\displaystyle \equiv$ $\displaystyle \sqrt{\boldsymbol{\omega}^{T}\boldsymbol{\omega}}$ (136)
$\displaystyle A$ $\displaystyle \equiv$ $\displaystyle \dfrac{\sin\theta}{\theta}$ (137)
$\displaystyle B$ $\displaystyle \equiv$ $\displaystyle \dfrac{1-\cos\theta}{\theta^{2}}$ (138)
$\displaystyle C$ $\displaystyle \equiv$ $\displaystyle \dfrac{1-A}{\theta^{2}}$ (139)
$\displaystyle D$ $\displaystyle \equiv$ $\displaystyle \dfrac{\frac{1}{2}-B}{\theta^{2}}$ (140)
$\displaystyle s^{-1}$ $\displaystyle \equiv$ $\displaystyle e^{-\lambda}$ (141)
$\displaystyle \alpha$ $\displaystyle \equiv$ $\displaystyle \dfrac{\lambda^{2}}{\lambda^{2}+\theta^{2}}$ (142)
$\displaystyle \beta$ $\displaystyle \equiv$ $\displaystyle \dfrac{s^{-1}-1+\lambda}{\lambda^{2}}$ (143)
$\displaystyle \gamma$ $\displaystyle \equiv$ $\displaystyle \frac{\frac{1}{2}-\beta}{\lambda}$ (144)
$\displaystyle X$ $\displaystyle \equiv$ $\displaystyle \dfrac{1-s^{-1}}{\lambda}$ (145)
$\displaystyle Y$ $\displaystyle \equiv$ $\displaystyle \alpha\cdot\beta+\left(1-\alpha\right)\cdot\left(B-\lambda C\right)$ (146)
$\displaystyle Z$ $\displaystyle \equiv$ $\displaystyle \alpha\cdot\gamma+\left(1-\alpha\right)\cdot\left(C-\lambda D\right)$ (147)
$\displaystyle \mathbf{R}$ $\displaystyle \equiv$ $\displaystyle \mathbf{I}+A\boldsymbol{\omega}_{\times}+B\boldsymbol{\omega}_{\times}^{2}$ (148)
$\displaystyle \mathbf{V}$ $\displaystyle \equiv$ $\displaystyle X\mathbf{I}+Y\boldsymbol{\omega}_{\times}+Z\boldsymbol{\omega}_{\times}^{2}$ (149)
$\displaystyle \exp\left(\mathrm{alg}\left(v\right)\right)=\exp\left(\begin{arra...
...dsymbol{\omega}_{\times} & \mathbf{u}\\
\hline 0 & -\lambda
\end{array}\right)$ $\displaystyle =$ $\displaystyle \left(\begin{array}{c\vert c}
\mathbf{R} & \mathbf{V}\cdot\mathbf{u}\\
\hline \mathbf{0} & s^{-1}
\end{array}\right)$ (150)

The coefficients of $ \mathbf{R}$ and $ \mathbf{V}$ should be calculated with Taylor series when $ \theta$ or $ \lambda$ is small.

Ethan Eade 2012-02-16