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Abstract

Localization and mapping in unknown environments be-
comes more difficult as the complexity of the environment in-
creases. With conventional techniques, the cost of maintain-
ing estimates rises rapidly with the number of landmarks
mapped. We present a monocular SLAM system that em-
ploys a particle filter and top-down search to allow real-
time performance while mapping large numbers of land-
marks. To our knowledge, we are the first to apply this
FastSLAM-type particle filter to single-camera SLAM. We
also introduce a novel partial initialization procedure that
efficiently determines the depth of new landmarks. More-
over, we use information available in observations of new
landmarks to improve camera pose estimates. Results show
the system operating in real-time on a standard workstation
while mapping hundreds of landmarks.

1. Introduction

Autonomous navigation in unknown environments re-
quires knowledge of both pose and the environment’s struc-
ture. This knowledge must be acquired online to make it
useful. The process of causally estimating both egomo-
tion and structure in an online system issimultaneous local-
ization and mapping(SLAM), around which an impressive
body of literature has been produced. Much of the research
comes from the robotics community, where the direct ap-
plication of SLAM to navigation is obvious. More recently,
extensive work has been undertaken in computer vision to
accomplish SLAM using visual data. This work is closely
related to the structure-from-motion (SFM) problem of re-
constructing scene geometry, and might be considered the
proper subset of of SFM that uses causal or recursive esti-
mation techniques.

The use of perspective-projection cameras as primary
SLAM sensors introduces new difficulties to the problem.
A single camera is a bearing-only sensor: it provides only
two-dimensional measurements of three dimensional struc-
ture. Thus filtering methods that allow indirect observa-
tion models are crucial to the problem. The Kalman fil-
tering framework that has emerged in the SLAM literature
in the past two decades adequately supports the projective

observation model. The Extended Kalman Filter (EKF) lin-
earizes the observation and dynamics models of the system
and represents all distributions as gaussians. A plurality of
robotics SLAM systems employ the EKF. In the SFM lit-
erature, there has been significant success using the EKF
for causal estimation – estimation depending only on obser-
vations up to the current time – with recursive algorithms
[2, 4, 9]. In contrast to SFM approaches that rely on global
nonlinear optimization, recursive estimation methods per-
mit online operation, which is highly desirable for a SLAM
system.

Davison shows the feasibility of real-time SLAM with a
single camera in [5], using the well-established EKF esti-
mation framework. His system takes a top-down Bayesian
estimation approach, searching for landmarks in image re-
gions constrained by estimate uncertainty instead of per-
forming extensive bottom-up image processing and fea-
ture matching. Additionally, he describes a Bayesian
partial-initialization scheme for incorporating new land-
marks. However, while the performance of his system is
accurate and robust, it cannot scale to large environments.
The EKF maintains a fullN × N covariance matrix forN
landmarks, requiringO(N2) space. This covariance is up-
dated with each measurement atO(N2) computation cost.
These time and space requirements limit the total number
of landmarks in the map tõ100 if real time operation is de-
sired. This level of map complexity allows localization and
sparse mapping in a single room, but is not suited to very
large areas or densely populated maps. Aggregated EKF
updates[8, 10] allow efficient operation while observing a
working set of landmarks, but fullO(N2) updates are still
required when changing the working set. Since the num-
ber of landmarksN grows with time,O(N2) update and
storage costs quickly grow past a workable level.

This paper describes a SLAM system using a single cam-
era as the only sensor, with the specific aim of frame-rate
operation with many landmarks. Estimates are maintained
in a FastSLAM-style[14] particle filter. To our knowledge,
this is the first use of such an approach in a monocular
SLAM setting, presenting significant challenges: The Fast-
SLAM particle filter model must be reconciled with the top-



Figure 1. The vehicle or camera makes observations (shown as
edges) of landmarks{Li} from each posesj . When the poses are
known completely, the landmark estimates become independent,
as landmarks are correlated only indirectly through their depen-
dence on pose.

down active search required for efficient operation in a vi-
sual SLAM system. Additionally, the partial observations
from a monocular sensor cause a high degree of coupling
between landmark positions, and do not allow new land-
marks to be simply incorporated into the system. To this
end, we present an efficient algorithm for discovering the
depth of new landmarks that avoids linearization errors. Fi-
nally, we describe a novel method for using partially initial-
ized landmarks to help constrain camera pose.

2. Background

2.1. Scalable SLAM

Extensive work has been undertaken in the robotics com-
munity to address the complexity of large scale mapping[3,
7, 13, 23]. Several approaches explicitly model the weak
covariance between geographically distant landmarks by
fully decorrelating their estimates in submaps. In a submap
of bounded complexity, computation and space require-
ments are also bounded. The EKF estimation framework
can still be used in each submap, as long as a method exists
for inferring migration from one submap to another. Other
approaches enforce sparsity of correlation between land-
marks in an adaptive manner, either by sparsifying inverse
covariance [21] or by choosing a different representation of
the covariance that is adaptively compressed [16].

More recently, Montemerlo et. al [14] have exploited
a probabilistic property inherent to the SLAM problem: If
the entire camera motion{si} is known then the estimates
of the positions of different landmarks become independent
of each other. As shown in Figure 1, for any two landmarks
Li andLj , and vehicle trajectory{si},

p(Li|Lj , {si}) = p(Li|{si}) (1)

Each observation of a landmark is a measurement of the
relationship between the vehicle and the landmark, so land-
mark estimates become correlated only when the vehicle
position is uncertain.

To take advantage of this independence, Montemerlo et
al. propose FastSLAM, which uses a particle filter to rep-
resent the distribution of vehicle poses. In each particlepj ,
the landmark positionsLj

i are independent and can be repre-
sented analytically by distinct gaussians. Thus forN land-
marks andM particles, FastSLAM requiresO(MN) space.
Moreover, observation of a landmark requires updates to the
pose estimates and only that landmark’s estimate in each
particle, at a total cost ofO(M). Each measurement causes
the particles to be reweighted, and eventually the weights
can converge to degenerate states. Resampling strategies
avoid this diversity depletion, but require copying each par-
ticle’s data. In FastSLAM, storing the landmark estimates
in each particle in a balanced tree gives an update cost of
O(log N) while allowing O(M log N) resampling. [14].
FastSLAM Particle filtering approximates a posterior dis-
tribution by sampling from a more tractable proposal dis-
tribution and weighting samples appropriately. Successful
filtering requires high-quality proposal distributions, in the
sense that they be as similar as possible to the desired poste-
rior. In order to satisfy this criterion, proposal distributions
should take into account the latest measurements available
to the system [22]. FastSLAM 2.0 [15] shows how such
improved proposals can be generated within the FastSLAM
framework by adjusting the sampled poses according to new
measurements. In order to successfully operate with few
particles, this improved proposal generation scheme is cru-
cial. If the transition prior given by the dynamic model is
taken directly as the proposal, few or no pose samples will
be sufficiently close to peaked observation likelihoods to ac-
curately model the posterior. In vision-based systems such
as the one described in this paper, observation likelihoods
are extremely peaked relative to the broad transition prior
given by the dynamic model. We employ a particle filter
similar to FastSLAM 2.0 to maintain pose and landmark es-
timates in SLAM.

2.2. Vision SLAM with Particle Filters

FastSLAM has been previously applied to vision-based
SLAM by Sim [20]. However, Sim’s system uses a bottom-
up approach to SLAM, building a large database of fea-
ture descriptors into which features from novel views are
matched to localize the robot. This approach precludes real-
time operation of his system, which has a mean processing
time per frame of 11.9s. Furthermore, Sim’s system uses a
stereo camera rig, which simplifies the observation model
but does not match the flexibility and low footprint of a
monocular system.

Kwok and Dissanayake[11] use a modified particle filter
to perform SLAM in a planar world by observing vertical
edges with a camera. The system uses particle clouds to
describe the probability distributions of landmarks in the
world as well as robot pose. In contrast to FastSLAM,



this approach fails to take advantage of the probabilistic in-
dependence of landmarks given camera pose. Results are
shown for only 33 landmarks, using 10,000 particles. The
running time and scaling complexity of the system is not
reported.

Pupilli and Calway[17] use a particle cloud to represent
camera pose hypotheses, while landmarks are represented
communally. The focus of the work is on robust camera
localization, so results with many landmarks are not shown.
Using 500 pose particles, the system operates at real time
when observing four known landmarks, but drops to below
frame rate when observing eight landmarks. Our goal is to
map many landmarks in real-time while estimating camera
motion accurately.

3. System Model

We use a single perspective-projection camera with
known calibration parameters as a sensor. The state esti-
mate of the system is encoded in a particle cloud. Each par-
ticle pj , with associated weightwj , corresponds to a com-
plete pose and map hypothesis, consisting of a camera pose
Cj and estimates of all landmarks{Li}. Landmarks are
observed in each video frame, and the particle cloud is up-
dated to reflect the observations. The camera motion in each
particle is governed by a dynamics model, and the observa-
tions by a measurement model, similar to SLAM in the EKF
framework.

3.1. Dynamic Model

Each camera pose is an element of the Lie group of rigid
Euclidean transformations, SE(3). Such an elementC is
stored as a transformation in projective three-space:

C =
(

R T
0 1

)
(2)

Camera velocities (in the camera frame) are elements of the
tangent space, or Lie algebra, of SE(3). These are repre-
sented as six-dimensional vectors, with each dimension cor-
responding to a generator of the Lie group. Velocities are
mapped onto geodesics in SE(3) with the exponential map
exp. To move a poseC by velocityµ over timeδ, the pose
is multiplied by the exponential ofµ:

Ct+δ = exp (δµ) · Ct (3)

For details of this representation, see [6, 9].
We assume a constant velocity motion model for each

camera hypothesis, similar to that given in [5]. During each
time step, a continuous random velocity walk with zero-
mean white-noise acceleration occurs. This diagonal veloc-
ity noise covariance is given by

Σ = diag(σ2
1 , ..., σ2

6) (4)

Integrating this random walk in velocity over the time inter-
val δ yields a 12-dimensional block-structured covariance
Q of camera parameters and their velocities at the end of
the time step:

Q =

(
δ3

3 Σ δ2

2 Σ
δ2

2 Σ δΣ

)
(5)

This process noise is used when incrementally improving
the posterior as described in Sec. 4. The velocity compo-
nents of each pose estimate are updated at the end of each
time step according to the estimated pose. Velocity uncer-
tainty in each camera pose hypothesis is not propagated
from one time step to the next, as such uncertainty is en-
coded in the set of hypotheses as a whole.

3.2. Observation Model

A landmark is a three dimensional location along with a
locally-planar image patch descriptor. For each particle, the
gaussian estimate of a landmarkL consists of a mean vector
and covariance matrix in three dimensions:

L ≡ (x,P) (6)

For a camera poseC = (R, t), the expected locationh of
landmarkL in the camera plane is

h(x) = project (C · x) (7)

C · x = Rx + t (8)

project
((

x y z
)T

)
=

(
x/z y/z

)T
(9)

4. Recursive State Estimation

The FastSLAM 2.0 filtering framework has important
differences from standard particle filtering methods. In par-
ticular, samples are not drawn until after observation up-
dates, in order to take into account the latest observations.
We describe the general operation below. For more details
and proofs of correctness, see [15].

At each time step, three stages of computation take place:
prediction, observation, and updates. In the prediction
stage, a frame is captured from the camera, and the cam-
era pose distribution is modified according to the dynamic
model. At the end of the previous frame, the pose distri-
bution was represented by a particle cloud. The linear dy-
namic model with process noiseQ is applied to each parti-
cle’s pose, yielding a gaussian distribution for each particle.
Thus, the prediction stage turns the sampled representation
of pose into a gaussian mixture representation of pose.

Using this predicted pose distribution, and the associated
landmark estimates for each particle, landmark observations
are extracted from the new frame (Sec. 4.1). The update
stage then computes the posterior distribution by incorpo-
rating these observations (Sec. 4.2), and resamples poses.



Crucially, landmark estimates are not updated until new
poses have been sampled, maintaining the independence of
landmark estimates within each particle. Thus, at the end
of processing for each frame, the distribution is again repre-
sented by pose samples with associated independent gaus-
sian landmark estimates.

4.1. Top-down Observation Framework

In a general SLAM scenario, observations come from
an abstract sensor, and the influx of observations does not
depend on the estimation machinery. However, in a vi-
sual SLAM system using constrained active search for land-
marks, this is not the case. Observations are made by ac-
tively searching new frames for landmarks. The search re-
gions are determined by the current estimates of camera
pose and landmark locations, and by the uncertainty in these
estimates. In an EKF SLAM system like [5], the search
region for a landmark is determined simply by projecting
the expected landmark location into the image and project-
ing the landmark uncertainty by linearizing the observation
model. However, with multiple pose hypotheses, and dis-
tinct landmark estimates for each pose hypothesis, a slightly
different strategy for searching the image must be adopted.

For each landmark to be observed, the gaussian estimate
of the landmark under each particle is projected into the
image, by taking the weighted mean and covariance. This
yields a single gaussian estimate of landmark location in
the image. The corresponding3σ ellipse in the image is
searched for the landmark. The landmark’s patch is warped
by an affine homographyA computed from the mode cam-
era pose estimate and the initial camera pose from which the
landmark’s patch was captured. The location inside the el-
lipse yielding maximal normalized cross correlation (NCC)
with the warped patch is taken as an observation of the land-
mark if the NCC score is above a threshold. If no such
match is found, the landmark measurement is considered
a failure. A simple heuristic based on the ratio of failed
to successful measurement attempts determines when land-
marks are removed from all particles’ maps.

4.2. Refining the Posterior

The result of observing landmarks in a frame is a set of
correspondences between image locations and landmarks.
Each observation is assumed to have one-pixel measure-
ment noise. These observations are used for two purposes:
First, the gaussian mixture model of camera poses is refined
according to the observations. Second, after poses are re-
sampled from this updated distribution, the landmark esti-
mates within each particle are updated using the same ob-
servations (and the newly-sampled poses). This allows the
proposal distribution from which new poses are sampled to
take into account the latest observations, while not destroy-

ing the conditional independence of landmark estimates in-
side each particle.

Given a set of observations, each observation can be used
to incrementally update every component of the gaussian
mixture model of poses. The update to each gaussian pose
component is a combination of the prior (given initially by
the dynamics model) and the likelihood (given by the obser-
vation), yielding a new gaussian posterior. The updates in
this phase are identical to standard EKF updates[15]. The
new particle weights{wj} are proportional to the likelihood
of the set of observations given each particlej, obtained by
integrating over camera pose, landmark position, and mea-
surement noise. By linearizing the observation model, each
weight can be computed in closed form. For a particle with
landmarkL (covarianceΣ), camera poseC, process noise
Q, observation jacobiansJL andJC , the set of observations
z with predicted position̂z and measurement noiseR yields
weightw:

w ∝ N [
ẑ;JCQJT

C + JLΣJT
L + R

]
(z) (10)

All linearizations are computed about the initial mean of
each pose gaussian (given by the prediction stage) so that
the order in which observations are processed does not af-
fect the cumulative result.

After all observations are processed, poses are randomly
sampled from the gaussian mixture. Using standard re-
sampling techniques[1], we create zero or more descen-
dants from each particle according to its weight, with each
descendant’s pose sampled from the particle’s associated
gaussian. Data copying is minimized in the resampling op-
eration by using copy-on-write: Each landmark estimate is
copied only when a the estimate is modified (i.e., when the
landmark is observed). Only shared pointers to landmark
estimates need to be copied from a particle to its descen-
dants during resampling. Using a tree, this can be further
reduced fromO(N) to O(log N) time.

Once resampling has taken place, the same set of ob-
servations is then used again to update the estimates of the
observed landmarks in each particle, with the standard EKF
update equations. Because the landmark estimates within
each particle are independent, each landmark update can be
computed in constant time. Thus, at the end of each time
step, the particle cloud is a set of samples drawn from the
posterior distribution of poses and landmarks given by all
observations up to the current time.

The total cost of updating landmark estimates and opti-
mizing the proposal overM particles givenk observations
is O(Mk), independent of the number of landmarksN . In
contrast, the EKF with full covariance requiresO(N2) time
to make observation updates, which makes large numbers
of landmarks impracticable.



5. Partial Initialization

In the above framework, landmarks are represented as
three dimensional gaussians. With a single camera, the
depth of a new landmark in the current view is unknown,
and must be estimated from multiple views before a gaus-
sian estimate of the landmark can be added to the map. Such
a landmark is said to bepartially initialized.

To this end, Davison maintains a set of depth hypothe-
ses uniformly distributed along the viewing ray of a new
landmark – a particle filter in one dimension[5]. Each
observation is used to update the distribution of possible
depths, until the distribution of depths is roughly gaussian,
at which point the estimate is added to the map as a three-
dimensional entity. Until this initialization occurs, the ray
estimate is maintained in the system’s single EKF. Lemaire
et al. use a similar approach, but distribute depth hypotheses
uniformly in inverse depth along the ray, as this corresponds
to constant density of hypotheses when projected into the
image[12]. As new measurements are made, Lemaire et
al. repeatedly prune unlikely hypotheses until only one re-
mains. A new landmark is initialized using the survivor hy-
pothesis as a starting point.

5.1. Determining Landmark Depth

While both of the above techniques perform adequately
as part of their respective SLAM systems, they are too ex-
pensive to maintain in our FastSLAM style system. With
M particles, there must beM instances of the multiple-
hypothesis depth filter for each new landmark. Observa-
tion updates of new landmarks then become expensive as
the likelihoods of all hypotheses in allM instances must be
evaluated. Furthermore, the depth range of new landmarks
is limited by these approaches, as a hypothesis must exist
with depth similar to that of the landmark to be initialized.
With these concerns in mind, we propose a new partial ini-
tialization strategy suitable to our particle filter.

Instead of estimating the depth of new landmarks, we
estimate the inverse depth in the frame of first observation.
Consider a newly observed landmark,L∗, selected automat-
ically from the image (we use the feature detector of [18]).
In the camera frame from which it is first observed, let its
three-dimensional location be given by

x∗ =
(

x y z
)T

(11)

Instead of maintaining an estimate of these coordinates, we
estimate the camera plane coordinates(u, v) and inverse
depthq in this initial view:

b∗ =
(

x
z

y
z

1
z

)T
(12)

=
(

u v q
)T

(13)

As noted above, samples distributed uniformly in inverse
depth along a viewing ray appear in novel views at uniform

(a) (b)
Figure 2. Estimating depth vs. estimating inverse depth, for several
successive observations of a new landmark: In(a), the estimates of
depth likelihood converge to a gaussian-like shape, but the initial
estimates are highly non-gaussian, with heavy tails. In contrast,
likelihoods of inverse depth in(b) (abscissa is inverse meters) for
the same data are nearly gaussian, even for the initial estimates.
Thus linear techniques can be used to estimate inverse depth.

distribution along the epipolar line in the image. Consider
the observation model under a simple camera displacement
t (no rotation):

h(x∗) = project (x∗ + t) (14)

=
1

z + tz

(
x + tx y + ty

)T
(15)

=
z

z + tz

1
z

(
x + tx y + ty

)T
(16)

=
1

1 + tzq

(
u + txq v + tyq

)T
(17)

When motion along the optical axis is small relative to the
depth of the point (tzq << 1), this is very nearly a linear
transformation in the modified coordinates.

h(x) ≈
(

1 0 tx

0 1 ty

) 


u
v
q


 (18)

This property implies that the EKF or its inverse form can
be employed to estimateb∗ in the local pose neighborhood
of the first sighting of the landmark, as the distribution of
the estimate is nearly gaussian. In contrast, the distribu-
tion of x∗ is a cone with apex at the camera center and al-
titude along the optical axis, and a single gaussian approx-
imation of this distribution is poor, as shown in Figure 2.
We use linear Kalman filtering techniques to estimateb∗
of a new landmark, independently in each particle’s map.
Each observation of the landmark is used to update the in-
verse depth estimate in each particle. When the uncertainty
in inverse depthq is small enough that the distribution of the
correspondingx∗ is gaussian, the landmark is added to the
particle’s map as a fully initialized three-dimensional point.
The change of variables is performed using the Unscented
Transform [19], avoiding systematic bias that simply trans-
forming the mean would induce.

One additional concern in partial initialization is that
depth estimates of new landmarks converge artificially



when no new information is actually being observed regard-
ing depth. For instance, if the camera is motionless, un-
modeled correlations in observation noise cause the depth
estimates of new landmarks to eventually converge to the
mean scene depth of other observed landmarks. To counter-
act this early convergence, we discard any observations of
new landmarks that lack sufficient depth information. This
allows the camera to sit still without fully initializing new
landmarks with spurious depth estimates.

5.2. Constraining Pose with Partially Initialized
Landmarks

In existing SLAM systems, observations of partially ini-
tialized landmarks are not used to update estimates of cam-
era pose. However, it should be noted that all observations
of such landmarks in the image yield a two-dimensional
measurement, which is used to estimate depth, a one di-
mensional quantity . This means that information in the
measurement is being wasted. In our system, the rest of
the information in the observation can be put to good use
to improve camera pose estimates according to the epipolar
constraint.

The location of a new landmark in the image can be con-
sidered in terms of the landmark’s epipolar line, determined
by the displacement from the first pose in which it was ob-
served (C0) to the current pose (C1). The vector, in the
camera plane, from the epipole (projection ofC0) to the
observed landmark location has scalar components in the
direction of the epipolar line and also perpendicular to the
epipolar line. The first component yields information about
the landmark’s depth (or inverse depth). The second com-
ponent should be zero for perfect estimates of camera pose.

Thus, the second component is a measure of epipolar re-
projection error, and can be used in the filter in the same
manner as observations of fully initialized points. Par-
tially initialized landmarks provide one dimensional mea-
surements of camera pose. The jacobians of this epipolar
observation function are computed at the current estimate
of b∗ and employed, just like observations of fully initial-
ized landmarks, to refine the posterior. Because these obser-
vations are effectively applying the epipolar constraint over
multiple frames and a variety of frame pairs, they help con-
strain pose hypotheses in both rotation and translation, up
to scale. Thus, even when viewing mostly partially initial-
ized points (such as at the beginning of system operation)
the camera poses can be well-constrained (Figure 9).

6. Results

Our SLAM system runs at frame-rate on a 2.8 GHz Pen-
tium 4 workstation or 1.7 GHz Pentium M laptop while
making 20-30 observations of landmarks in each frame.
The processing time is nearly independent of the number

Figure 3. Time per frame vs. number of landmarks in the map.
Processing time per frame is independent of the number of land-
marks in the map.

Figure 4. A view of a nearly planar scene, and the map gener-
ated from a 20 second motion. The landmarks cover a roughly
1m2 area. The landmarks in the map, shown as3σ ellipsoids, are
coplanar to within 1 cm.

of landmarks in the map, except for the very small but O(N)
cost of deciding what landmarks to observe. Figure 3 shows
that per-frame processing time does not increase noticeably
with the number of landmarks.

We show preliminary results of running our SLAM sys-
tem in an indoor environment. The system is initialized by
observing four points with known structure, giving it a mea-
sure of scale in the world. After initialization, all landmarks
are acquired without user intervention. Figure 4 shows the
map generated by observing many nearly-planar objects on
a planar surface roughly one square meter in size, and one
of the camera views of the scene. Landmarks in the map
are represented by3σ ellipsoids, except when the uncer-
tainty in a landmark is very small, in which case it is drawn
as a small but visible sphere. The generated map accurately
reflects the planar structure, to within 1 cm. Some of this
error can be attributed to the nonzero width of some of the
objects.

Figure 5 shows the system traversing a loop. The camera
starts at the initialization point, then moves away, and then
returns by a different path, but reacquires the initialization
points as it returns to the origin. Closing such loops is an
important and difficult task for a SLAM system in order to
minimize drift.

Figure 6 shows the map generated over a 3000 frame se-
quence. More than 250 landmarks are included in the map.
Using 50 particles and making 20-30 observation updates



Figure 5. The camera, shown as coordinates axes, closes a loop.
The trajectory trace is shown. There are 98 landmarks in the map.

Figure 6. A map with 265 landmarks, viewed from overhead. The
mapping was performed over a 100 second sequence at frame rate.

per frame, the system runs at frame-rate (30Hz) through-
out the sequence. Because of the density of landmarks, the
structure of the environment can be easily eyeballed from
the mapping.

To evaluate the impact of the number of particles on the
estimation, we use the same sequence with 50, 250, and
1000 particles. For all landmarks common to all particles
at the end of the sequence, we generate from the particles
a single large covariance matrix, with dimension3N × 3N
for N landmarks. The eigenvalues of this matrix show how
many dimensions of uncertainty are captured by the sys-
tem. Specifically, we examine the off-diagonal covariance,
because each particle maintains a diagonal estimate of land-
mark covariance: the distribution of particles must account
for off-diagonal components. In all three cases the eigen-
values of the off-diagonal covariance drop to tiny values af-
ter the 30th eigenvalue, which implies that 50 particles is
sufficient for the sequence. However, a more detailed and
rigorous analysis will be necessary for longer and larger tra-
jectories.

In Figure 7, new landmarks are being initialized into the
map. The rays in the map on which the landmarks lie are
shown in red. These rays correspond to the epipolar lines

Figure 7. New landmarks being initialized. They lie on the rays
shown in the map. When their inverse depth is determined with
sufficient certainty, the rays become gaussian ellipsoids. The cor-
responding camera view is shown in Figure 8.

Figure 8. New landmarks being observed in the image. Epipolar
lines, according to the mode particle’s estimate, are overlaid. The
distance of observed landmarks from their epipolar lines can help
constrain pose: See Figure 9.

shown in Figure 8.
Partially initialized landmarks help constrain camera

pose as described in Sec. 5.2. For instance, when the cam-
era is stationary and viewing four planar points from a dis-
tance, there is an affine ambiguity that makes camera un-
certainty high, as reflected by the particle cloud in Figure 9
(a). Because the camera is not moving, the depths of new
landmarks cannot be determined. However, by enforcing
the epipolar constraint, the pose can be considerably con-
strained, as shown in 9 (b).

7. Conclusions

We have presented a monocular SLAM system that oper-
ates at frame-rate while observing hundreds of landmarks.
Our solution uses a FastSLAM particle filter to take advan-
tage of the conditional independence inherent in the SLAM
problem. We have shown how this filter can be incorpo-
rated into a single-camera, real-time system. Moreover,
we have described a new partial initialization strategy for
adding new landmarks to the map with a bearing-only sen-
sor. This strategy estimates the inverse depth of new land-
marks rather than their depths, and we have shown that this
change of coordinates allows linearization algorithms to op-
erate successfully.



(a) (b)
Figure 9. The camera pose estimate, shown at the top of(a) and
(b) in particle-cloud form, is poorly constrained by observing only
the four fully-initialized landmarks in(a). By additionally apply-
ing the epipolar constraint to several partially initialized landmarks
(no depth information), the camera pose is far better constrained,
as shown in(b).

There remain significant challenges to tackle with a
particle-filter SLAM system intended to operate on large
geographic scales. The number of particles necessary to
maintain reasonable estimates of uncertainty in the pose
and landmark estimates is not well known; it may increase
with the environment complexity. While our system is ca-
pable of closing loops over short distances (though still with
hundreds of landmarks), we have not yet evaluated its loop
closing performance over larger trajectories. Because loop
closing relies on accurate and consistent estimates of esti-
mate uncertainties, adaptive particle sampling or an active
loop closing algorithm may be necessary.
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