
Monocular SLAM as a Graph of Coalesced Observations

Ethan Eade

ee231@cam.ac.uk

Tom Drummond

twd20@cam.ac.uk

Abstract

We present a monocular SLAM system that avoids incon-

sistency by coalescing observations into independent local

coordinate frames, building a graph of the local frames, and

optimizing the resulting graph. We choose coordinates that

minimize the nonlinearity of the updates in the nodes, and

suggest a heuristic measure of such nonlinearity, using it to

guide our traversal of the graph. The system operates in

real-time on sequences with several hundreds of landmarks

while performing global graph optimization, yielding accu-

rate and nearly consistent estimation relative to offline bun-

dle adjustment, and considerably better consistency than

EKF SLAM and FastSLAM.

1. Introduction

Simultaneous localization and mapping (SLAM) with

a single camera is an especially interesting and difficult

form of the general problem. Solutions attempt to esti-

mate environment structure and camera trajectory online,

under a highly nonlinear partial observation model. Over

recent years, the vision community has explored several ap-

proaches to the problem. These systems use results and

methods from structure-and-motion work, and from the

robotics literature, where SLAM has been a busy topic for

some time. Our work is motivated by both perspectives.

Recursive or causal estimation, in which the state es-

timate of the system depends only on observations up to

the current time, is a common element of SLAM solu-

tions, which must operate online. The extended Kalman

filter (EKF) provides the recursive estimation machinery

for several vision SLAM systems[1, 7, 11, 8]. Davison[8]

successfully employs an EKF to perform real-time estima-

tion in monocular SLAM. The EKF linearizes the obser-

vation and dynamics models, yielding a Gaussian posterior

on state. This representation is faithful to the true posterior

only when the models are nearly linear. In the case of per-

spective projection of Cartesian points with a single camera,

the observation model is far from linear.

Davison addresses this problem pragmatically by using

a two-stage initialization process involving a particle filter.

More recent approaches[9, 16] show that the observation

model becomes nearly linear (for small camera displace-

ments) when using an inverse depth representation.

The monocular SLAM system of [9] uses the FastSLAM

algorithm[15] to perform recursive estimation with a Rao-

Blackwellized particle filter. The focus of the work is on

real-time operation with many landmarks, which is espe-

cially difficult with the EKF due to its computational com-

plexity.

However, for the nonlinear observation models of vi-

sual SLAM, both the EKF and FastSLAM approaches are

inconsistent[3, 4]. A consistent filter generates a poste-

rior estimate on state without synthesizing information not

present in observations. Inconsistency implies underesti-

mation of uncertainty, which prevents convergence to the

correct solution and can lead to catastrophic failure. In the

EKF, inconsistency results from imperfect approximation of

the observation model by a linearization, and representation

of uncertainties in a common global frame. In FastSLAM,

the limited number of particles used to represent map un-

certainty also causes inconsistency.

Standard offline global bundle adjustment avoids incon-

sistent posteriors, as each iteration of the nonlinear opti-

mization re-linearizes the model around the current state for

all observations[21]. Errors in linearization do not propa-

gate from one iteration to the next. Unfortunately, standard

bundle adjustment algorithms cannot be feasibly employed

for on-line SLAM, as they require storage of all observa-

tions, and the computational requirements of optimization

grow rapidly with the number of observations and land-

marks.

Some basic approaches to hierarchical bundle adjust-

ment have been explored. The method of [10] first estimates

trifocal tensors over view triplets, then later performs a full

bundle adjustment over all these subsets. However, the aim

is not to make the bundle adjustment more efficient, but in-

stead to get a starting point for bundle adjustment without

performing SLAM. The system is not intended for online

use (and such a target is unattainable with a full bundle ad-

justment stage).

The system described in [18] and [17] (both papers de-

scribe the same system) performs bundle adjustment over

Figure 1. Observations are coalesced in nodes (local coordinate

frames.

a constant number of recent key frames, which are chosen

sparsely from the set of all views using simple heuristics.

While performing such temporally local bundle adjustment

improves the accuracy of the result, for sufficiently large se-

quences it will not converge to the solution given by a full

optimization. It offers a quantitative, instead of a qualita-

tive, improvement over basic SLAM. Statistical consistency

is not evaluated.

Our approach can be viewed as a hierarchical bundle ad-

justment algorithm, in which multiple observations shar-

ing a nearly-linear observation model are coalesced into

nodes containing high-dimensional, rich observations, and

the relations between these high-dimensional observations

are optimized at the global level. Thus optimization of

the linear parts of the parameter space proceeds recursively,

permitting global optimization at orders-of-magnitude less

cost than bundle adjustment. No video frames in the se-

quence need be privileged as key frames. No observations

are ignored or forgotten; all are naturally assimilated into

the filter and constrain the optimization.

We propose a monocular SLAM algorithm that employs

recursive estimation in local coordinate frames with a nearly

linear observation model, but performs further optimiza-

tion iteratively over a graph of such frames. The system

avoids inconsistency by not propagating linearization er-

rors through the global posterior, and by always represent-

ing uncertainties locally. Several SLAM systems in the

robotics literature represent state using multiple local co-

ordinate frames [6, 13, 14, 5, 2]. The Atlas[5] framework

and H-SLAM[14] build graphs, but do not optimize cycles

in the graph. The Network Coupled Feature Maps (NCFM)

approach[2] performs optimization over graph cycles. Of

these approaches, our system most resembles Atlas and

NCFM.

We make the following contributions in this work: We

Figure 2. Common estimated landmarks in nodes induce similarity

transformations between the nodes.

describe, to our knowledge, the first implementation of

real-time monocular SLAM using multiple local coordinate

frames. We avoid inconsistency in our SLAM estimate by

using local coordinates that make the observation model

nearly linear. Furthermore, we quantify the nonlinearity of

the model, allowing us to choose the optimal local coordi-

nate frame to update with new observations. The system

uses top-down active search, yielding reliable data associ-

ation and allowing efficient operation. We show results of

the system on indoor sequences, and compare its estimates

to EKF SLAM and FastSLAM, as well as to bundle adjust-

ment.

2. Representation of State

We represent our state of knowledge about the world as

a graph. The nodes of the graph contain information from

distinct sets of observations, with an observation defined as

a set of landmark measurements in a single video image.

The nodes are constrained such that these observations can

be combined using a (nearly) linear observation model, pro-

viding an estimate of landmark positions in a local coordi-

nate frame. The edges of the graph represent the transfor-

mations between the coordinate frames of nodes that con-

tain estimates of common landmarks. Because the scale

within each node is a free parameter, the transformations

must represent scale changes between nodes. Thus the edge

transformations are scaled Euclidean transformations – i.e.,

similarity transformations.

2.1. Similarity Transformations

A similarity transformation S is given by a rotation and

translation (R, T) ∈ SE(3) and a scale s: S = [(R, T), s].
A Cartesian point x is mapped via S as

S(x) ≡ s (Rx + T) (1)

Analogously to the rigid transformation group SE(3), dif-

ferentials and covariances of similarity transforms are rep-

resented in the tangent space around the origin, and mapped

into the space via the exponential map. A camera pose

(RC , TC) maps through S = [(R, T), s] by

(RC , TC)
S
7→
(

RCRT , s · (TC − RCRT T)
)

(2)

2.2. Coalescing Observations in Nodes

Each node maintains Gaussian estimates of landmarks

observed locally. For the filter to be consistent, the actual

posterior distributions of the landmark coordinates must be

well represented as Gaussians. However, a perspective pro-

jection model with Gaussian observation noise yields highly

non-Gaussian posteriors in Cartesian coordinates: Two ob-

servations of a landmark with a narrow baseline give a cone-

shaped distribution in space.

The Gaussian observations fail to induce a Gaussian pos-

terior because the observation model f(x) is considerably

nonlinear: the projection to the image plane involves divi-

sion by the depth of the landmark. Consider the projection

function for a camera pose in the local coordinate frame

with translation T and no rotation:

f (x) = π (x + T) (3)

=
1

z + T3

(

x + T1 y + T2

)

(4)

Even for T3 = 0, the projection is nonlinear in the land-

mark coordinates. We choose instead an inverse depth rep-

resentation for landmarks, given in terms of local Cartesian

coordinates by

(

u v q
)T

≡
1

z

(

x y 1
)T

(5)

The observation model is now nearly linear in landmark co-

ordinates:

f
(

(

u v q
)T
)

= π

(

(

1

q
(u v 1

)T

+ T

)

(6)

= π
(

(

u v 1
)T

+ qT
)

(7)

=
1

1 + qT3

(

u + T1 v + T2

)T

(8)

When the local depth of the landmark is large relative to

the displacement of the camera from the origin, we have

qT3 << 1, and the nonlinearity vanishes. The observation

function remains linear for any camera translation in the X-

Y plane, and for any rotation purely around the Z axis of

the coordinate frame. We quantify the nonlinearity using

the Hessian (see Sec. 3.2). We represent the state of all

landmarks in a node with a mean vector (in inverse depth

representation) , and a full information matrix (inverse co-

variance) on the coordinates.

3. SLAM Algorithm

The framework described in Sec. 2 could be employed

in offline structure and motion estimation, performing bun-

dle adjustment with substantially reduct computational cost.

However, SLAM requires more than this, and we describe

its operation in this section.

A single calibrated camera provides video images to the

system. At any time, one node is designated active. Each

time a video image is retrieved from the camera, the follow-

ing takes place:

1. Active Search: Landmark locations are predicted us-

ing existing state estimates in and around the active

node. Constrained searches for predicted landmarks in

the image yield a set of noisy measurements (an obser-

vation).

2. Choosing the active node: The node where the ob-

servation model is most linear will best accommodate

the observation. A new node might be created if no

suitable one exists. The chosen node becomes active.

3. Updating the local state: The active node incorpo-

rates the observation into its local state estimate, avoid-

ing inconsistency in the computation.

4. Updating the graph: Nodes with estimates of com-

mon landmarks are connected with edges. The node

states and any cycles in the graph provide constraints

on graph edges, which are optimized globally.

3.1. Active Search

We perform constrained searches in the video image to

measure landmarks. A node associates a small image patch

with each landmark it has seen, taken from the first local

measurement of the landmark. The active node’s landmark

estimates are projected into the image through the observa-

tion model, and the gated uncertainty ellipses describe the

region of the image where the landmark should appear with

high confidence.

We scale and rotate the landmark’s patch according to

the current estimate of camera pose, relative to the pose

in which the patch was acquired. This accounts, to first

order, for appearance changes of the patch due to camera

motion. The warped patch is sought in a gated region us-

ing normalized cross correlation. All correlations above a

threshold contribute to the measurement estimate (location

and noise). Measurements with a high spatial noise in the

image are discarded, avoiding spurious measurements of re-

peated structure.

We do not base our predictive search solely on informa-

tion in the active node; we also incorporate estimates from

nearby nodes in the graph. A distance-limited breadth-first

search of the node starting from the active node yields a tree

connecting nearby nodes. We propagate a landmark’s esti-

mates through this tree into the active node (the root). This

propagation progresses in a depth-first manner, with each

node first collecting estimates from its children in the tree

before mapping the combination through the edge to its par-

ent. Thus the uncertainty of each coordinate transformation

is reflected properly in the result.

When the estimates reach the the active node, any local

information about the landmark is added to the prediction.

This yields a posterior estimate of the landmark in the lo-

cal coordinate frame, conditioned on the information in all

nodes of the tree. This posterior is projected through the

observation model, yielding a refined search region in the

image.

Thus, even if a node does not have a direct estimate of a

landmark, or even if its estimate is very uncertain, by com-

bining the information from nearby nodes, a feasible pre-

diction can be made for the landmark. Note that the internal

state of all nodes in the tree remains unchanged by this pro-

cess; it serves only to aid the active search.

When the ratio of failed to successful searches for a land-

mark reaches a threshold, or when the search fails many

times consecutively, the landmark is dropped from the ac-

tive node. Nodes manage landmark memberships indepen-

dently, so dropping a landmark from the active node does

not cause it to be removed from other nodes. Thus, the set

of local nodes maintaining estimates of a landmark L is ef-

fectively a visibility map and appearance model of L.

3.2. Choosing the Active Node

For a given observation (set of measurements) made

from a video image, we choose to update one node’s state

estimate. This will be the active node. The process of coa-

lescing observations into a node yields a Gaussian estimate

of the posterior in the node’s coordinate system. This rep-

resentation is faithful only when the observation model is

nearly linear. Otherwise, information is synthesized and the

filter becomes inconsistent. The choice of inverse depth rep-

resentation makes perspective projection nearly linear, com-

pared to the highly nonlinear projection of Cartesian coor-

dinates. However, the model will still lose linearity with

sufficient camera motion away from the node’s origin. We

quantify the nonlinearity of the observation model as a func-

tion of the camera pose in order to choose the best node to

update.

An observation model linear in the landmark parameters

will have a Hessian of zero in those parameters. Thus the

‘magnitude’ of the Hessian gives a measure of the depar-

ture from linearity. We choose the Laplacian of the obser-

vation model with respect to the landmark (the trace of the

Hessian) as a measure of the nonlinearity. That is, evalu-

ating the Laplacian of the projection of inverse depth point

p =
(

u v q
)

through camera pose C = (R, T) yields

a vector that describes how much the Jacobian changes

when p is perturbed. We use the magnitude of this vector

as our measure:
(

u′ v′
)T

≡ π (C (p)) (9)

nl(C,p) ≡

∣

∣

∣

∣

(

∂2

∂u2
+

∂2

∂v2
+

∂2

∂q2

)

(

u′ v′
)T

∣

∣

∣

∣

(10)

To get a heuristic estimate of nonlinearity for a pose

without considering a specific landmark, we note that the

scale of local node landmark estimates is normalized to be

near unit depth. So we define our heuristic

ñl(C) ≡ nl

C,

0
0
1

T

(11)

To accommodate uncertainty in the camera pose, we use

the unscented transform[20] to map a Gaussian estimate of

camera pose to a Gaussian estimate of nonlinearity.

We consider the current active node and all of its neigh-

bors in the graph as candidates for the update. A candi-

date is viable only if it has estimates of at least k of the

measured landmarks, and the nonlinearity of the camera

pose (mapped into the candidate node) is below a prede-

fined threshold m. Typical values are k = 6 and m = 0.75.

The value k must be large enough to ensure that the state

update in the node will be well-conditioned.

Assuming that multiple viable candidates exist in the lo-

cal neighborhood, the candidate with the least nonlinearity

wins. When no candidate is viable, a new node is created

(see Sec. 3.6) and made active. Given a viable candidate,

the camera pose and its uncertainty are projected through

the edge to the chosen node, which now becomes the active

node. The local state update is performed in the active node.

3.3. Local State Update

Given an observation – a set of two-dimensional Gaus-

sian measurements of landmarks – updating a node’s mean

vector µ and information matrix I reduces to standard non-

linear optimization. Consider an observation z with (block

diagonal) noise R, and a camera pose starting point C. Let

the observation model be given by g. We wish to maximize

the likelihood of z under our prior (µ and I) by adjusting

µ by δµ and the pose by δC. Equivalently, we minimize

the negative log-likelihood E of the observation and the up-

dates:

v ≡ z− g(µ + δµ, C + δC) (12)

E = vT R−1v + δµT Iδµ (13)

This system is identical to bundle adjustment with one view

and a prior on structure given by I. We reduce the sys-

tem using the Schur complement, as described in detail in

[21], marginalizing the camera pose out of the result. We

employ the Cholesky decomposition to perform Levenberg-

Marquardt minimization of E. Note that the scale of struc-

ture in the local node is a gauge freedom – scaling all the

landmarks’ q coordinates does not affect E. We fix the

gauge at each iteration by adding a large prior along the

direction of current q coordinates (which keeps the opti-

mization from moving the state uniformly along that vec-

tor). When the optimization is complete, we normalize the

geometric mean of the inverse depths (and scale the corre-

sponding elements of I by the same factor), again fixing the

gauge.

Note that we impose no prior on pose C: The pose

‘guess’ serves merely to start the optimization in the right

minimum. Adding any information about the current pose

estimate to the optimization would make the result covariant

with the pose. This would violate the statistical indepen-

dence of distinct local nodes, as the pose estimate would

carry information from one node’s state into another’s.

The iterative minimization yields δµ and an updated in-

formation matrix I′, as well as a pose update δC with as-

sociated information ΣC
1. We find that the minimization

almost always (in more than 99% of updates) converges in

one iteration, which reflects the near linearity of the obser-

vation model. The state update effectively coalesces the

new observation into the local node’s single merged high-

dimensional observation. The update cost is cubic in the di-

mension of the node’s state, but in our implementation, up-

dates incorporating observations of 30 measurements into

nodes with 50 landmarks consume a small fraction (less

than 5 milliseconds) of our computation budget. By bound-

ing the number of landmarks estimated in each node, we

also bound the cost of updates.

3.4. Landmark Acquisition

When an insufficient number of known landmarks is ob-

servable in the current video image (due to movement into

new territory), the system must acquire new landmarks to

track. We use the FAST corner detector[19] to choose well-

textured points in the image, and avoid regions around the

projections of existing landmarks in the given image. The

image patch surrounding the corner is stored so that the

landmark may be observed in subsequent images (using the

warping described above).

Initialization of new landmarks has received much at-

tention in monocular SLAM[8, 12, 9, 16], as incorporating

partially-observed state into a SLAM filter is tricky. How-

ever, because we use an inverse depth representation for

landmarks, and because we store the state in an information

form, partial initialization becomes trivial.

Consider a newly chosen landmark L, with a chosen lo-

cation p in the image and unit-pixel-radius Gaussian noise

in p. Mapping p and the noise through the calibrated cam-

era model yields a point z = (u, v)T in the image plane

of the current pose, with associated noise Rz. This is the

first (and only) measurement of L. We map the image plane

point (u, v, 1) through the current camera pose C = (R, T)
to get an inverse depth representation p in the local frame:

X ≡ RT
(

u v 1
)T

− RT T (14)

p =
1

X3

(

X1 X2 1
)T

(15)

The mean of L (in µ) is initialized to p to provide a

reasonable linearization point for the iterative optimization.

The rows and columns of I corresponding to L are zeros,

reflecting that we have not yet incorporated any informa-

tion about L. The measurement (z,Rz) is added to the

update along with any other measurements made in the lat-

est image. The update optimization then yields the correct

posterior on L in the local node’s coordinates, which has

information in only two of three dimensions. Crucially, it

also correctly fills in the cross-information between L and

other landmarks measured in the same video image. Sub-

sequent measurements of L will yield estimates of its yet-

unobserved dimension (the depth of L in the camera frame

of C).

3.5. Updating the Graph

For any two nodes sharing a sufficient set of landmarks,

a similarity transformation between the nodes is implied by

the estimates of common landmarks. This similarity trans-

formation is made explicit by estimating it and storing it

in an edge linking the two nodes in a graph. An edge en-

codes the data-association information that links estimates

in one local node to those in another. Edges are considered

undirected, but the transformation along one direction is the

inverse of that along the other direction.

An instantiated edge maintains both the (7-dimensional)

Gaussian transformation estimate (SL, ΣL) induced locally

by the two endpoints and a separate similarity transforma-

tion SG that is modified by the graph optimization algo-

rithm, taking into account (SL, ΣL) (see Sec. 4). Point

and camera estimates are projected through the edge using

(SG, ΣL), which gives the optimized mean and a conserva-

tive (over) estimate of covariance ΣL.

The estimate (SL, ΣL) is computed from the shared

landmark estimates in the endpoints. Iterated Gauss-

Newton optimization modifies the parameters of SL to max-

imize the likelihood of landmark estimates in the source

projected through (SL, ΣL) into the target. The more pre-

cise the local estimates of landmarks in the source and tar-

get, the more precise the resulting transformation estimate.

In contrast to the algorithm of Atlas[5], whenever a local

update is performed in one of the endpoint nodes, or when

one of the endpoints modifies its local scale, the edge trans-

formation is recomputed to reflect the change. Further opti-

mization of SG is described below in Sec. 4.

3.6. Creating Nodes

When no existing node satisfies the requirements given

in Sec. 3.2, a new node is created. An edge is created from

the current active node to the new node. The local trans-

formation estimate SL of the edge is initialized to the pose

estimate in the active node, with unit scale. The new node

becomes active, with the camera pose mapping to the iden-

tity and the pose uncertainty vanishing. The observation

from the current video image is added directly to the new

node’s local state, without performing an update optimiza-

tion.

Until the new node has undergone several local updates,

the transformation estimate is not recomputed, as it will be

poorly constrained. Once the new node has acquired a non-

degenerate local structure estimate, the transformation esti-

mate is computed and maintained.

3.7. Creating Edges

After the active node performs a local update, the neigh-

borhood of the graph around the active node is explored

with a breadth first search. If a node within a fixed (graph)

distance of the active node shares a sufficient number of

landmarks with the active node, a new edge is created be-

tween them. In our implementation, we require 10 shared

landmarks. The local transformation estimate of the edge

is immediately computed from the common landmark esti-

mates.

4. Graph Optimization

At each time step, after the observation has been pro-

cessed and new nodes and edges created, we perform global

optimization on the current graph. The optimization mod-

ifies only the transformation parameters SG in the graph

edges, leaving the coalesced node observations untouched

(and independent).

Two types of constraints are at work in the graph. First,

shared landmarks between nodes induce local constraints

encoded in each edge by (SL, ΣL). Second, the rigid geom-

etry of three-space implies that any edge path from a node

back to itself should compose to the identity transformation.

So each cycle in the graph yields a constraint.

Our optimization seeks the maximum likelihood graph

in which cycles compose to the identity. Consider edge

transformations a, b, c, respectively joining nodes A → B,

B → C, and C → A. With juxtaposition implying compo-

sition, the cycle constraint implies

cba = 1 (16)

Figure 3. Cycle constraints.

So each cycle constraint removes an edge from the opti-

mization, to be determined as a function of the remaining

edges such that the cycle satisfies the constraint.

We detect cycles in the graph by building a spanning tree,

T . Recall that a spanning tree touches all nodes in the graph.

We build T by doing a full breadth first search of the graph.

Each edge f /∈ T yields a cycle path, given by the edges

ci ∈ T forming the path from one end of f to the other. Let

this composed path in the tree be path(f). Let the local

constraint (SL, ΣL) for an edge g be localg . With E the

set of all edges in the graph, we define a likelihood:

L(T) =
∏

e∈T

L(e|locale) ·
∏

f∈E\T

L(path(f)|localf)

(17)

We minimize the negative log-likelihood using precon-

ditioned gradient descent. We precondition by multiplying

the standard gradient descent search direction by the inverse

of the block-diagonal approximation of the Hessian. This

is equivalent to Gauss-Newton optimization with a block-

diagonal Hessian. We find that the preconditioning greatly

speeds convergence.

Global graph optimization typically converges in fewer

than 15 iterations each time step, requiring a small portion

(20%) of the computation budget. Because the graph is op-

timized at each time step, it is never far from the minimum,

except when long cycles appear for the first time, introduc-

ing new constraints on several edges. In these cases, the

optimization converges rapidly over several time steps.

5. Results

Our system runs in real time on a standard 2.8 GHZ Pen-

tium IV workstation. It processes 640x480 VGA frames

captured from a USB2 camera at 30 Hz. The computation

break-down is shown in Fig. 4. Examples of operation and

output are shown in Fig. 8, Fig. 9 and Fig. 7.

Task Time (ms)

Corner Detection 3

Landmark Prediction 2

Landmark Search 10

Local Update 5

Graph Optimize 4

Visual Rendering 4

Figure 4. Processing time per frame, while measuring 30 land-

marks per frame in a graph with approximately 50 nodes, 200

edges, and 60 cycles. There are more than 400 landmarks esti-

mated in the graph.

For the purposes of evaluation, we run our SLAM sys-

tem on three indoor sequences of length roughly one minute

each, recording all measurements as it runs. Then EKF

SLAM, FastSLAM, and bundle adjustment are run on the

recorded set of observations. Bundle adjustment converges

to the same solution given the any of the SLAM solutions

as a starting point.

We use the FastSLAM implementation described in [9].

We use an EKF SLAM implementation similar to that de-

scribed in [8], trying both a Cartesian coordinate system for

landmarks, and an inverse depth coordinate system. The

consistency and accuracy when using inverse depth are su-

perior for our sequences, so we present only the better

EKF results for comparison. All the SLAM systems use

a constant-velocity motion model with identical process

noise.

Our bundle adjustment performs a Levenberg-Marquardt

optimization over a reduced system, as described in detail

in [21]. At each iteration, we normalize the map scale, to

keep the gauge from drifting. The optimization ceases when

the residual cannot be decreased by at least a factor of 1 −
10−12.

For each SLAM algorithm, at the end of processing we

compute the covariance of all the landmarks projected into

a common (world) frame, and compute the corresponding

covariance over landmarks given by the bundle adjustment.

Denote the SLAM posterior covariance by PS and the co-

variance given by the iterative bundle adjustment by PB .

A consistent estimate should yield a positive definite differ-

ence:

PD = PS − PB (18)

Intuitively, a consistent estimate will converge to the true

solution when given more and more information, thus

shrinking dimensions of the covariance constrained by the

additional measurements. We compute the difference of co-

variances and examine its eigen-decomposition. We also

compute structure errors between the maps given by the fil-

ters and that given by bundle adjustment.

In our indoor sequences, our SLAM algorithm yields no

Sequence Local SLAM FastSLAM EKF

a 2% 55% 66%

b 5% 52% 48%

c 3% 80% 68%

Figure 5. Percent of eigenvalues of PD which are negative: 0% is

fully consistent.

Sequence Local SLAM FastSLAM EKF

a 2.48 16.78 15.59

b 3.45 11.46 9.43

c 2.15 8.34 3.40

Figure 6. Reconstruction errors: the root mean residual of land-

mark positions compared to bundle adjustment, after registering

the maps.

Figure 7. The map posterior at the end of a sequence. The map

contains more than 400 landmarks. For display, all landmark esti-

mates have been projected to a common coordinate frame through

the graph edges, as described in Sec. 3.1. No offline optimization

has been performed.

worse than 5% negative eigenvalues. This implies that 5%

of the state estimate dimensions have become inconsistent.

The EKF and FastSLAM implementations run on the same

sequences yield worse than 48% inconsistency (Fig.5).

To compare the accuracy of the generated maps, we

check the residual of the landmark positions compared to

bundle adjustment (using the covariances given by the pos-

teriors of bundle adjustment and SLAM). First the maps are

aligned with the posterior of bundle adjustment with a sim-

ilarity transformation optimized to minimize this residual.

As shown in Fig.6, our SLAM method gives better recon-

struction accuracy than either the EKF or FastSLAM on our

sequences.

6. Conclusion

We have described a SLAM system that avoids inconsis-

tent estimation by coalescing observations into local coor-

dinate frames, represented in a graph. The system employs

an inverse depth representation locally to minimize the non-

linearity of the perspective projection observation model.

Figure 8. During SLAM operation. The graph nodes (red) are

shown relative to the active node, and edges are drawn in green

between them. The system is observing new landmarks.

Figure 9. The end of a sequence. The graph contains 22 nodes,

36 edges, and 15 cycles. All Landmarks are projected through the

graph into the active node for display purposes.

We have also shown how to estimate the nonlinearity of the

model, so that the most appropriate graph node updates its

estimate from observations each time step.

Our initial evaluation demonstrates that the system oper-

ates efficiently, producing posteriors for large maps (hun-

dreds of landmarks) that are nearly consistent relative to

bundle adjustment. Furthermore, global graph optimization

over cycles is easily computed each time step within the

bounds of computation.

References

[1] A. Azarbayejani and A. P. Pentland. Recursive estimation of

motion, structure, and focal length. PAMI 1995, 17(6):562–

575, June 1995.

[2] T. Bailey. Mobile robot localisation and mapping in exten-

sive outdoor environments. PhD thesis, ACFR, Univ. of Syd-

ney, August 2002.

[3] T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot.

Consistency of the ekf-slam algorithm. In IEEE/RSJ IROS

2006, Beijing, China, October 2006.

[4] T. Bailey, J. Nieto, and E. Nebot. Consistency of the fastslam

algorithm. In IEEE ICRA 2006), Orlando, USA, May 2006.

[5] M. Bosse, P. Newman, J. Leonard, M.Soika, W. Felten, and

S. Teller. An atlas framework for scalable mapping. In ICRA,

pages 1899–1906, Taiwan, April 2003.

[6] J. A. Castellanos, R. Martinez-Cantin, J. D. Tardos, and

J. Neira. Robocentric map joining: Improving the consis-

tency of ekf-slam. Robot. Auton. Syst., 55(1):21–29, 2007.

[7] Chiuso, Favaro, Jin, and Soatto. Structure from motion

causally integrated over time. IEEE PAMI 2002, 24(4):523–

535, April 2002.

[8] A. Davison. Real time simultaneous localisation and map-

ping with a single camera. In ICCV, Nice, France, July 2003.

[9] E. Eade and T. Drummond. Scalable monocular slam. cvpr,

1:469–476, 2006.

[10] A. W. Fitzgibbon and A. Zisserman. Automatic camera re-

covery for closed or open image sequences. In ECCV 1998,

pages 311–326, June 1998.

[11] H. Jin, P. Favaro, and S. Soatto. A semi-direct approach

to structure from motion. The Visual Computer, 19(6):377–

394, Oct 2003.

[12] T. Lemaire, S. Lacroix, and J. Sola. A practical 3d bearing-

only slam algorithm. In IROS 2005, August 2005.

[13] J. J. Leonard and P. M. Newman. Consistent, convergent,

and constant-time slam. In IJCAI, pages 1143–1150, 2003.

[14] Lisien, Morales, Silver, Kantor, Rekleitis, and Choset. Hier-

archical simultaneous localization and mapping. IROS 2003,

pages 448–453, October 2003.

[15] Montemerlo and Thrun. Simultaneous localization and map-

ping with unknown data association using fastslam. In Proc.

of IEEE ICRA 2003, Taipei, 2003.

[16] J. Montiel, J. Civera, and A. Davison. Unified inverse

depth parametrization for monocular slam. In Proceedings

of Robotics: Science and Systems, Philadelphia, USA, Au-

gust 2006.

[17] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and

P. Sayd. 3d reconstruction of complex structures with bundle

adjustment: an incremental approach. In ICRA 2006, pages

3055–3061, Orlando, USA, May 2006. IEEE Computer So-

ciety.

[18] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and

P. Sayd. Monocular vision based slam for mobile robots. In

ICPR 2006, pages 1027–1031, Washington, DC, USA, 2006.

IEEE Computer Society.

[19] E. Rosten and T. Drummond. Fusing points and lines for

high performance tracking. In ICCV 2005, volume 2, pages

1508–1515, October 2005.

[20] J. K. U. S. J. Julier. A new extension of the kalman filter to

nonlinear systems. In The Proceedings of AeroSense, pages

1628–1632, Orlando, Florida, USA, 1997. SPIE.

[21] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon.

Bundle adjustment – a modern synthesis. In B. Triggs,

A. Zisserman, and R. Szeliski, editors, Vision Algorithms:

Theory and Practice, volume 1883 of Lecture Notes in Com-

puter Science, pages 298–372. Springer-Verlag, 2000.

