7.4 Adjoint Representation

First we treat elements of $ \mathrm{\mathfrak{sl}}(3)$, which are $ 3\times3$ matrices, as 9-vectors, writing the entries in row-major order. Then, for $ h\in\mathrm{\mathfrak{sl}}(3)$ and $ \mathbf{H}\in\mathrm{SL}(3)$, the conjugation $ \mathbf{H}\cdot h\cdot\mathbf{H}^{-1}$ can be expressed as a linear mapping $ \mathbf{C}_{\mathbf{H}}$ on the elements of $ h$. Pre- and post- applying matrix representations of $ \mathrm{alg}$ and $ \mathrm{alg}^{-1}$ respectively then gives the adjoint representation.

Let


$\displaystyle \left[\mathrm{alg}\right]$ $\displaystyle \equiv$ $\displaystyle \left(\begin{array}{cccccccc}
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0\\
0 ...
... 1\\
0 & 0 & 0 & -2 & 0 & 0 & 0 & 0
\end{array}\right)\in\mathbb{R}^{9\times8}$ (88)
$\displaystyle \left[\mathrm{alg}^{-1}\right]$ $\displaystyle \equiv$ $\displaystyle \left(\begin{array}{ccccccccc}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\...
...\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)\in\mathbb{R}^{8\times9}$ (89)
$\displaystyle \mathbf{C}_{\mathbf{H}}$ $\displaystyle \equiv$ $\displaystyle \left(\begin{array}{c\vert c\vert c}
\mathbf{H}_{11}\mathbf{H}^{-...
...thbf{H}_{32}\mathbf{H}^{-T} & \mathbf{H}_{33}\mathbf{H}^{-T}
\end{array}\right)$ (90)

Then


$\displaystyle \mathrm{Adj}_{\mathbf{H}}$ $\displaystyle =$ $\displaystyle \left[\mathrm{alg}^{-1}\right]\cdot\mathbf{C}_{\mathbf{H}}\cdot\left[\mathrm{alg}\right]$ (91)



Ethan Eade 2012-02-16