8.4 Adjoint Representation

The adjoint representation of $ \mathrm{SO}(3)$ is actually identical to the rotation matrix representation due to properties of the cross product:

$\displaystyle \mathbf{R}$ $\displaystyle \in$ $\displaystyle \mathrm{SO}(3)$ (104)
$\displaystyle \mathbf{a},\mathbf{b}$ $\displaystyle \in$ $\displaystyle \mathbb{R}^{3}$ (105)
$\displaystyle \left(\mathbf{R}\cdot\mathbf{a}_{\times}\cdot\mathbf{R}^{T}\right)\cdot\mathbf{b}$ $\displaystyle =$ $\displaystyle \mathbf{R}\cdot\left(\mathbf{a}\times\mathbf{R}^{T}\cdot\mathbf{b}\right)$ (106)
  $\displaystyle =$ $\displaystyle \left(\mathbf{R}\cdot\mathbf{a}\right)\times\mathbf{b}$ (107)
  $\displaystyle =$ $\displaystyle \left(\mathbf{R}\cdot\mathbf{a}\right)_{\times}\cdot\mathbf{b}$ (108)
$\displaystyle \implies\mathbf{R}\cdot\mathbf{a}_{\times}\cdot\mathbf{R}^{T}$ $\displaystyle =$ $\displaystyle \left(\mathbf{R}\cdot\mathbf{a}\right)_{\times}$ (109)
$\displaystyle \implies\mathrm{Adj}_{\mathbf{R}}$ $\displaystyle =$ $\displaystyle \mathbf{R}$ (110)



Ethan Eade 2012-02-16