8.3 Exponential Map

The exponential map from $ \mathrm{\mathfrak{so}}(3)$ to $ \mathrm{SO}(3)$ has a closed form (also called the Rodrigues formula). The tangent vector $ \boldsymbol{\omega}$ can be interpreted as an axis-angle representation of rotation: its exponential is the rotation around the axis $ \boldsymbol{\omega}/\left\Vert \boldsymbol{\omega}\right\Vert $ by $ \left\Vert \boldsymbol{\omega}\right\Vert $ radians:


$\displaystyle \boldsymbol{\omega}$ $\displaystyle \in$ $\displaystyle \mathbb{R}^{3}$ (99)
$\displaystyle \theta$ $\displaystyle \equiv$ $\displaystyle \sqrt{\boldsymbol{\omega}^{T}\boldsymbol{\omega}}$ (100)
$\displaystyle \exp\left(\mathrm{alg}\boldsymbol{\omega}\right)$ $\displaystyle =$ $\displaystyle \exp\left(\boldsymbol{\omega}_{\times}\right)$ (101)
  $\displaystyle =$ $\displaystyle \mathbf{I}+\boldsymbol{\omega}_{\times}+\frac{1}{2!}\boldsymbol{\omega}_{\times}^{2}+\frac{1}{3!}\boldsymbol{\omega}_{\times}^{3}+...$ (102)
  $\displaystyle =$ $\displaystyle \mathbf{I}+\left(\frac{\sin\theta}{\theta}\right)\boldsymbol{\ome...
...s}+\left(\frac{1-\cos\theta}{\theta^{2}}\right)\boldsymbol{\omega}_{\times}^{2}$ (103)

The higher-order terms in Eq. 102 collapse because $ \boldsymbol{\omega}_{\times}^{3}=-\theta^{2}\boldsymbol{\omega}_{\times}$. The coefficients of $ \mathbf{R}$ should be calculated with Taylor series when $ \theta$ is small.

Given a rotation matrix $ \mathbf{R}\in\mathrm{SO}(3)$, the logarithm can be computed by first determining $ \cos\theta=\frac{1}{2}\left(\mathrm{tr}\left(\mathbf{R}\right)-1\right)$, and then computing $ \boldsymbol{\omega}$ from symmetric differences (see the second term of Eq. 103).

Ethan Eade 2012-02-16