9.2 Lie Algebra

The Lie algebra $ \mathrm{\mathfrak{se}}(3)$ has six generators:


$\displaystyle G_{1}={\scriptstyle \left(\begin{array}{ccc\vert c}
0 & 0 & 0 & 1\\
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0\\
\hline 0 & 0 & 0 & 0
\end{array}\right)},$ $\displaystyle G_{2}={\scriptstyle \left(\begin{array}{ccc\vert c}
0 & 0 & 0 & 0\\
0 & 0 & 0 & 1\\
0 & 0 & 0 & 0\\
\hline 0 & 0 & 0 & 0
\end{array}\right)},$ $\displaystyle G_{3}={\scriptstyle \left(\begin{array}{ccc\vert c}
0 & 0 & 0 & 0\\
0 & 0 & 0 & 0\\
0 & 0 & 0 & 1\\
\hline 0 & 0 & 0 & 0
\end{array}\right)}$ (115)
$\displaystyle G_{4}={\scriptstyle \left(\begin{array}{ccc\vert c}
0 & 0 & 0 & 0\\
0 & 0 & 1 & 0\\
0 & -1 & 0 & 0\\
\hline 0 & 0 & 0 & 0
\end{array}\right)},$ $\displaystyle G_{5}={\scriptstyle \left(\begin{array}{ccc\vert c}
0 & 0 & -1 & 0\\
0 & 0 & 0 & 0\\
1 & 0 & 0 & 0\\
\hline 0 & 0 & 0 & 0
\end{array}\right)},$ $\displaystyle G_{6}={\scriptstyle \left(\begin{array}{ccc\vert c}
0 & 1 & 0 & 0\\
-1 & 0 & 0 & 0\\
0 & 0 & 0 & 0\\
\hline 0 & 0 & 0 & 0
\end{array}\right)}$ (116)

Thus the mapping $ \mathrm{alg}:\mathbb{R}^{3}\rightarrow\mathrm{\mathfrak{se}}(3)$ :


$\displaystyle \mathbf{u},\boldsymbol{\omega}$ $\displaystyle \in$ $\displaystyle \mathbb{R}^{3}$ (117)
$\displaystyle \mathrm{alg}\left(\begin{array}{c}
\mathbf{u}\\
\boldsymbol{\omega}
\end{array}\right)$ $\displaystyle =$ $\displaystyle \left(\begin{array}{c\vert c}
\boldsymbol{\omega}_{\times} & \mathbf{u}\\
\hline 0 & 0
\end{array}\right)$ (118)



Ethan Eade 2012-02-16