2.5 Adjoint Representation

Consider tangent vectors $ a,b\in\mathfrak{g}$ and a group element $ X\in\mathrm{G}$. How can we choose $ b$ such that the following relation holds?

$\displaystyle \exp\left(b\right)\cdot X=X\cdot\exp\left(a\right)$ (11)

Right multiplying both sides by $ X^{-1}$ yields a conjugation by $ X$:

$\displaystyle \exp\left(b\right)=X\cdot\exp\left(a\right)\cdot X^{-1}$ (12)

We could then compute $ b$ by taking the logarithm:

$\displaystyle b=\log\left(X\cdot\exp\left(a\right)\cdot X^{-1}\right)$ (13)

In fact, the identical result can be obtained by using the adjoint representation. A group $ \mathrm{G}\subset\mathbb{R}^{n\times n}$ with $ k$ degrees of freedom has an isomorphic representation as the group of linear transformations on $ \mathfrak{g}$, called the adjoint:


$\displaystyle X$ $\displaystyle \in$ $\displaystyle \mathrm{G}$ (14)
$\displaystyle a$ $\displaystyle \in$ $\displaystyle \mathfrak{g}$ (15)
$\displaystyle \mathrm{Adj}_{X}:\mathfrak{g}$ $\displaystyle \rightarrow$ $\displaystyle \mathfrak{g}$ (16)
$\displaystyle \mathrm{Adj}_{X}\left(a\right)$ $\displaystyle =$ $\displaystyle X\cdot a\cdot X^{-1}\in\mathfrak{g}$ (17)

Elements of the adjoint representation are usually written as $ k\times k$ matrices acting on the coefficient vectors of elements in $ \mathfrak{g}$ by multiplication.

The adjoint representation preserves the group structure of $ \mathrm{G}$:


$\displaystyle X,Y$ $\displaystyle \in$ $\displaystyle \mathrm{G}$ (18)
$\displaystyle \mathrm{Adj}_{X\cdot Y}$ $\displaystyle =$ $\displaystyle \mathrm{Adj}_{X}\cdot\mathrm{Adj}_{Y}$ (19)
$\displaystyle \mathrm{Adj}_{X^{-1}}$ $\displaystyle =$ $\displaystyle \mathrm{Adj}_{X}^{-1}$ (20)

Returning to our motivating problem, we define $ b$ using the adjoint:


$\displaystyle b$ $\displaystyle \equiv$ $\displaystyle \mathrm{Adj}_{X}\left(a\right)$ (21)
$\displaystyle \implies\exp\left(b\right)$ $\displaystyle =$ $\displaystyle X\cdot\exp\left(a\right)\cdot X^{-1}$ (22)
$\displaystyle \implies\exp\left(b\right)\cdot X$ $\displaystyle =$ $\displaystyle X\cdot\exp\left(a\right)$ (23)

Thus the adjoint is effectively the Jacobian of the transformation of tangent vectors through elements of the group:


$\displaystyle \mathbf{c}$ $\displaystyle \in$ $\displaystyle \mathbb{R}^{k}$ (24)
$\displaystyle X$ $\displaystyle \in$ $\displaystyle \mathrm{G}$ (25)
$\displaystyle f:\mathrm{G}\times\mathbb{R}^{k}$ $\displaystyle \rightarrow$ $\displaystyle \mathbb{R}^{k}$ (26)
$\displaystyle f(X,\mathbf{c})$ $\displaystyle =$ $\displaystyle \mathrm{alg}^{-1}\left(\log\left(X\cdot\exp\left(\mathrm{alg}\left(c\right)\right)\cdot X^{-1}\right)\right)$ (27)
$\displaystyle \frac{\partial f}{\partial\mathbf{c}}\big\vert _{\mathbf{c}=0}$ $\displaystyle =$ $\displaystyle \mathrm{Adj}_{X}$ (28)

Ethan Eade 2012-02-16