2.6 Group Action on $ \mathbb{R}^{n}$

Given the matrix representation of $ \mathrm{G}$ in $ \mathbb{R}^{n\times n}$, there is a natural action on the vector space $ \mathbb{R}^{n}$ (equivalently the projective space $ \mathbb{P}^{n-1}$) by multiplication:


$\displaystyle X$ $\displaystyle \in$ $\displaystyle \mathrm{G}$ (29)
$\displaystyle X:\mathbb{R}^{n}$ $\displaystyle \rightarrow$ $\displaystyle \mathbb{R}^{n}$ (30)
$\displaystyle X\left(\mathbf{v}\right)$ $\displaystyle =$ $\displaystyle X\cdot\mathbf{v}$ (31)

For the groups described below, this group action by matrix multiplication yields a transformation on points or lines in 2D or 3D Euclidean or projective space. For example, the group action of an element of $ \mathrm{SE}(2)$ on $ \mathbb{P}^{2}$ (the 2D plane as homogeneous coordinates in $ \mathbb{R}^{3}$) is a rotation and translation of the plane coordinates.

The Jacobian of this action by the group differentials around the identity is trivially computed using the $ k$ generators of the algebra:


$\displaystyle \mathbf{p}$ $\displaystyle \in$ $\displaystyle \mathbb{R}^{n}$ (32)
$\displaystyle \mathbf{c}$ $\displaystyle \in$ $\displaystyle \mathbb{R}^{k}$ (33)
$\displaystyle f\left(\mathbf{c},p\right)$ $\displaystyle \equiv$ $\displaystyle \exp\left(\mathrm{alg}\left(\mathbf{c}\right)\right)\cdot\mathbf{p}$ (34)
$\displaystyle \frac{\partial f}{\partial\mathbf{c}}$ $\displaystyle \big\vert _{\mathbf{c}=0}=$ $\displaystyle \left(\begin{array}{c\vert c\vert c\vert c}
G_{1}\cdot\mathbf{p} ...
...f{p} & \cdots & G_{k}\cdot\mathbf{p}\end{array}\right)\in\mathbb{R}^{n\times k}$ (35)

Ethan Eade 2012-02-16